
csrGen: Automated CSRs for
ASIC/FPGA Processor Interfaces

Chuck Benz

Chuck Benz ASIC and FPGA Design

cbenz@chuckbenz.com

ABSTRACT

csrGen is a tool to automatically produce synthesizable verilog RTL code for the registers that
make up the memory map of a processor interface from a simple template that lists and describes
the registers. Using a tool for registers speeds ASIC or FPGA development, avoids common
errors, and can also aid documentation, verification, and firmware development.

SNUG San Jose 2003 2 csrGen: Automated CSRs for ASICs/FPGAs

Table of Contents
Table of Contents .. 2
Table of Figures .. 2
1 Introduction ... 3
2 CSR Operation and Types of CSRs .. 3
3 Implementing CSRs in an ASIC/FPGA Design.. 4

3.1 Implementation Errors... 5
3.2 Automating CSRs with an EDA Tool ... 5

4 The csrGen Template File Syntax... 6
4.1 A Simple Example .. 6
4.2 csrGen Structure Declarations... 8
4.3 Address Declarations... 8
4.4 csrGen CSR Properties.. 9
4.5 csrGen Module Properties... 10
4.6 Flop Properties .. 11
4.7 Direct Verilog Code .. 11

5 Design Verification ... 12
6 Future Enhancements and Improvements ... 12

6.1 csrGen Enhancements ... 12
6.2 Other Directions .. 13

7 Conclusions and Recommendations.. 13
8 Acknowledgements ... 13
9 References ... 13

Table of Figures
Figure 1 Example csrGen Template File... 6
Figure 2 Example csrGen verilog output .. 7

SNUG San Jose 2003 3 csrGen: Automated CSRs for ASICs/FPGAs

1 Introduction

Many ASIC and FPGA designs include processor interfaces. Beyond the logic specific to how
the particular processor bus operates, these interfaces consist mainly of a set of control/status
registers (CSRs), described by a memory map spanning many addresses. Often these register sets
are quite large, and there may be a variety of behaviors associated with different fields in the
registers.

The logic structures to implement these CSRs are repetitive and relatively simple. This makes
automating the task of RTL coding them attractive. Automating the task has several advantages:

• Time savings – the RTL coding is verbose, and different code fragments relating to one
CSR field are scattered in many different places in the RTL: declaration, module I/O list,
sensitivity list, read logic, write logic, reset and clock logic. Automation allows one
simple specification of a field to propagate to all of those code fragments.

• Correctness – with all of those code fragments for one field dispersed, errors are possible.
• Consistency – an automated tool tends to suggest preferred structures (not by limiting

options, but by making the preferred way easy), and simplifies the use of templates,
examples, or descriptions of structures to be used for all chips in a project.

• Single source code – a specification that is more than the source for RTL, also generates:
o the verification environment, including automated testing of CSR fields,
o embedded firmware, which usually needs a .h file to describe field locations,
o documentation.

This paper describes csrGen which is a PERL script to automate the CSRs in a processor
interface. It was written with these goals in mind:

1. Simple but powerful template format to describe CSR fields.
2. Quick operation to produce updated RTL after any change.
3. Many different types of CSR field behavior.
4. Allow for functionality beyond register read/write access (integrate user written RTL

directly in the template).
5. Create synthesis-ready Verilog RTL code (csrGen could be adapted for VHDL).
6. Create CSR field definitions for C, Verilog, and Vera.
7. Create code fragments for the module that instantiates the processor interface (wire

declarations and an instantiation).

csrGen is freely available at http://asics.chuckbenz.com

2 CSR Operation and Types of CSRs

A basic CSR is an "entity" that a processor can read and/or write at a specific address and bit
position(s). This implies a set of flops, a write multiplexer controlled by a write strobe and an
address decode, and a read multiplexer controlled by an address decode. This can be termed a
"read/write" CSR.

SNUG San Jose 2003 4 csrGen: Automated CSRs for ASICs/FPGAs

Many applications require a broad variety of different CSR properties, often combining several
of these properties. A small subset of common CSR types is summarized below as examples.

Read-Only: a common variation, with no logic for writing. Sometimes this may be a constant
value, for example a chip ID or version number.

Clear-on-read: the read operation returns the value of the CSR, but then the contents are reset to
zero. A similar property would be that the value is reset to zero by writing a non-zero value –
the intent being that writes can be made to other fields (usually control fields) at the same
address without modifying this field (usually a status or counter field). For multi-bit fields, some
implementations of this might reset all bits if any non-zero value is written, others might do a bit-
by-bit write-1-to-clear and require all 1's to clear the multi-bit field.

'Sticky': often used to describe register bits that are set and remain set in response to an event.
Often these may be events that propagate as an interrupt. The sticky bit would usually be cleared
by a clear-on-read or write-1-to-clear operation.

Counters: another common CSR type. They also may be clear-on-read or write-1-to-clear.

Execute action: some CSR fields act as triggers – when written, some operation should be
performed. The value written may or may not be significant. Sometimes the field retains it's
value until the operation is complete and can be read to determine completion status, or the field
might not be read at all (write-only).

There are many other possibilities for CSR behaviors; these are simply the most common. Most
designers and programmers first become familiar with basic read/write registers as part of a
standard processor model, and then may learn about the variations as microprocessor peripherals
or peripherals integrated in a microcontroller.

3 Implementing CSRs in an ASIC/FPGA Design

Most processor interface logic is coded in RTL by a designer, with some logic specific to how
the processor bus operates, flops for the CSRs, read logic, write logic, and ancillary logic for
special functions such as triggered operations, counters, and interrupts.

Sometimes this may be in a single module, or it may be spread over several modules in a design
with one module for the actual chip IO. When the CSR logic is in a single module, most CSR
fields are outputs from that module and connect to other modules that use the values. Or for
status fields, they are inputs to the CSR module coming from other modules. Additionally, a file
is created with definitions of each CSR’s address, with and position in a general form that is
easily transformed into C, verilog, or Vera define statements.

SNUG San Jose 2003 5 csrGen: Automated CSRs for ASICs/FPGAs

3.1 Implementation Errors

The CSRs can be an error prone area of a design for several reasons:
• The behavior is spread across many distinct locations of the RTL code, including: the

module IO list and declarations, the flop reset value, the read logic, the write logic, and
logic for any special properties.

• The logic is simple, so often designers are less careful in coding it, particularly when
making a late change to a design. Often the focus is on the application of the CSR field
that is being added, rather than the read/write access logic for it.

• Verification sometimes may focus more on control of chip operation (writes) rather than
chip status (reads).

As a designer, I have often made late changes to CSRs in a design and stumbled over errors in
sensitivity lists, module IO lists, and other minor syntax errors. I have also observed a bug in a
released commercial IP core from a good vendor in which two bit positions were reversed
between read and write operations.

3.2 Automating CSRs with an EDA Tool

Portions of the processor interface are obviously automated, but doing just those portions then
requires a way to integrate the automatic parts with the rest. And the rest of the logic will differ
for (almost) every design. One possibility is generating code fragments that are then assembled
by a designer using a favorite text editor, but that requires repeating that step with every change
(and change seems inevitable). Another might be using constructs like verilog’s ‘include
construct, but many (including this author) reject that, preferring that the full RTL code be
apparent when looking at the main file (and there may be file management issues).

A more elegant model of tool operation is the "automatics" present in verilog emacs mode [1].
This uses special comments which are expanded by the emacs editor to add the automatic code.

Automating RTL code for CSRs has been done by designers on many projects. csrGen is the
second such tool I have developed. The first tool read a list of CSR definitions from a file (a
custom syntax) and generated verilog code fragments and documentation fragments. Repeating
the assembly of the fragments for each change became tiresome.

For csrGen, the decision was made to use a template file (syntax specific for csrGen) that would
define CSR fields and also include as much verilog code as a designer might wish to integrate
with the CSR code. The csrGen program processes the template and produces a verilog file
(ready for synthesis) with the complete module. It also generates a file with verilog ’wire’
declarations for all module IO signals, and a file with a verilog instantiation – these files can be
inserted into the verilog file for the next higher module in the hierarchy.

SNUG San Jose 2003 6 csrGen: Automated CSRs for ASICs/FPGAs

4 The csrGen Template File Syntax

4.1 A Simple Example

Figure 1 is a very simple example of a csrGen template file, and Figure 2 is the verilog RTL that
is produced by csrGen.

%A 0
7:0 field1

%A 1
7:0 version RO

%A 2
3:0 field2
6 someerror sticky W1C

%I read
%I write
%I address 4
%I up_datain 8
%OF up_dataout 8

%VCL
if (write) case (address)
%writecase
endcase

if (read) case (address)
%readcase
endcase
%E

%AUTO

Figure 1 Example csrGen Template File

%A describes an address – the lines following %A define fields at that address, with optional
properties.
%I describes an input, with an optional width.
%OF describes an output from flops, with optional width.
%VCL starts the user defined combinational logic, which ends with %E. The %writecase and
%readcase are expanded by csrGen with all necessary write and read logic.
%AUTO selects the use of 'automatics' from emacs verilog mode for the module IO list and for the
sensitivity list. csrGen can generate these directly, but this option may be preferred by designers
already using emacs verilog mode (and it also cuts the number of lines in the output for our
example, so it fits on just one page).

(This example uses just a small subset of the options and properties supported by csrGen).

SNUG San Jose 2003 7 csrGen: Automated CSRs for ASICs/FPGAs

module chip_up_ifc (/*AUTOARG*/) ;
input clock, initl ;
input [7:0] version;
input someerror;
input read;
input write;
input [3:0] address;
input [7:0] up_datain;
output [7:0] field1;
output [3:0] field2;
output [7:0] up_dataout;
reg [7:0] field1, field1_D;
reg [3:0] field2, field2_D;
reg someerrorS, someerrorS_D;
reg [7:0] up_dataout, up_dataout_D ;

always @ (/*AUTOSENSE*/) begin
 field1_D = field1 ;
 field2_D = field2 ;
 someerrorS_D = someerrorS | someerror ;
 up_dataout_D = up_dataout ;

if (write) case (address)
0: begin
 field1_D = up_datain[7:0] ;
end
1: begin
end
2: begin
 field2_D = up_datain[3:0] ;
 someerrorS_D = (someerrorS_D & ~up_datain[6]) | someerror ;
end
endcase

if (read) case (address)
0: begin
 up_dataout_D[7:0] = field1 ;
end
1: begin
 up_dataout_D[7:0] = version ;
end
2: begin
 up_dataout_D[3:0] = field2 ;
 up_dataout_D[6] = someerrorS ;
end
endcase
end

always @ (posedge clock or negedge initl)
 if (! initl) begin
 field1 <= 0 ;
 field2 <= 0 ;
 someerror <= 0 ;
 up_dataout <= 0 ;
 end
 else begin
 field1 <= field1_D ;
 field2 <= field2_D ;
 someerrorS <= someerrorS_D ;
 up_dataout <= up_dataout_D ;
 end
endmodule

Figure 2 Example csrGen verilog output

SNUG San Jose 2003 8 csrGen: Automated CSRs for ASICs/FPGAs

Highlighted in figure 2 is the verilog code that was written by the designer in the template file. In
this example, very little was written by the designer, but it should be clear from the example that
the designer can insert any desired statements to alter values before or after the case statements
for write and read logic.

The coding style separates all combinational logic from the code for flops – this allows for the
designer to add statements to modify the '_D' variables as desired with statements.

The generated code has the main structure shown:
• Comments from template file
• Module, input, output, reg, wire declarations
• Designer code from %V block in template file
• always verilog block for combinational logic

o defaults for all _D inputs to flops
o designer code from %VCL block in template file, with read and write cases

expanded
• always verilog block for flops (clock and reset)

4.2 csrGen Structure Declarations

Aside from CSRs, csrGen provides for declaring and creating the usual variety of structures used
in RTL coding, such as inputs, outputs, flops, and wires. The declaration format is somewhat
simpler, so syntax errors are less likely. These declarations include:

• %I – input, with an optional width.
• %O – output, with an optional width.
• %W – wire declaration, with an optional width.
• %R – verilog reg declaration, with an optional width (creates no other structure).
• %F – flop, with an optional width, reset value, and direct value:

%F <flopname> [width [resetvalue [directvalue]]]

• %OF – output from a flop, with an optional width, reset value, and direct value.

All of these also can be specified as repeated structures: %IREPEAT, %OREPEAT, etc..., with a
repeat count specified after the name:

%FREPEAT <flopname> <repeatcount> [width [resetvalue [directvalue]]]
If the name contains a '%' character, it will be replaced by an index incrementing from 0 as the
structure is repeated, otherwise the index will be appended to the name. A '%' character in the
direct value will also be replaced by the index.

4.3 Address Declarations

The %A declaration begins definition of a set of CSRs at a specified address. Each following line
is taken to define a CSR, and is expected to start with a numeric character. The next line that

SNUG San Jose 2003 9 csrGen: Automated CSRs for ASICs/FPGAs

begins with ’%’ is understood as the end of the CSRs for that address. The %A declaration format
is:
 %A <address> ["name or comment"] [properties] [writetaskname] [readtaskname]

The numeric address may be decimal or hex (in the form “0x1a”). Properties and any text in
quotes may precede or follow the tasks. The first token not quoted and not recognized as a
property will be taken as a verilog task name to be called when the address is written. The
second such token will be taken as a verilog task name to be called when the address is read.
The properties are a subset of the properties described below for individual CSRs, and apply to
all fields at the specific address. The subset is: RO, COR, W1C (all defined below as CSR
properties).

The calls to verilog tasks for write and read operations allow for the designer to add special logic
that might be associated with triggering related operations. (“Execute action” as described in
section 2).

A repeated form of %A is also supported as %AREPEAT with a repeat count following the address,
which is the starting address for the repetition. If no further parameter is present, then the CSRs
will be repeated at addresses incrementing by 1; otherwise the third parameter is the address
increment between repetitions. If any of the optional parts of the %A declaration are desired, they
must be preceded by an increment value, even if it is 1. If a CSR name in a %AREPEAT
declaration includes a '%' character, it will be replaced by the incrementing index. If the CSR has
the 'buss' property then the index is used as a bit subscript in the form name[index] (only for
single bit fields), otherwise the index is appended to the name.

4.4 csrGen CSR Properties

This section lists the properties that may be set on individual register fields. Most can be applied
in combination with others. These keywords can be in any order on the same line with the
register field definition. Upper vs. lower case is not significant.

• Intern: internal – indicates that the field is not an output or input of this verilog module.
• RO: read only – the field is only present in the read logic, and is an input to the module

(unless ‘Intern' property is also declared).
• COR: clear on read – the field is reset to 0 when the address is read.
• W1C: write-1-to-clear – the field is reset to 0 when the address is written and the

corresponding bit(s) is/are 1, but is not altered if the bit(s) is/are 0. (csrGen implements this
on a per-bit basis for multi-bit fields).

• ST: sticky – the field is sticky. The name in the definition is taken as an input to the module
(unless 'Intern'), and a flop is created for the sticky memory. The sticky value will remain 1 if
the nominal value is ever 1, if even only for one clock cycle. In the example above,
someerror becomes an input, someerrorS is the sticky flop, and logic is also present for the
'W1C' property. This is customarily a single bit field.

• SOR: set on read – the field is set to all 1's when the address is read.
• DOR: decrement on read – the field is decremented by 1 when the address is read.

SNUG San Jose 2003 10 csrGen: Automated CSRs for ASICs/FPGAs

• DORS: decrement on read, saturating – if not zero, the field is decremented by 1 when the
address is read.

• IOR: increment on read – the field is incremented by 1 when the address is read.
• IORS: increment on read, saturating – if not all 1's, the field is incremented by 1 when the

address is read.
• W1S: write-1-to-set – the field is set to 1's when the address is written and the corresponding

bit(s) is/are 1, but is not altered if the bit(s) is/are 0. (csrGen implements this on a per-bit
basis for multi-bit fields).

• WO: write only – the field is only present in the write logic.
• ST0: sticky low – like sticky, but the sticky value stays 0 if the nominal value is ever 0.
• Incr: incrementer – the field is an incrementing counter. The name in the definition is taken

as a one bit input to the module (unless 'Intern'), and a counter with the field width is defined
with '_cntr' appended to the name.

• IncrS: incrementer, saturating – same as Incr, but stops incrementing at all 1's.
• Decr: decrementer – similar to Incr, but decrementing.
• DecrS: decrementer, saturating – same as Decr, but stops decrementing at all 0's.
• SUB/SUBM: subset and subset msb – if several fields/addresses are to be catenated to form a

larger field, the same name is used for each subset and is defined as a field with the SUB
property followed by a range definition. The subset field with the most significant bit of the
larger field must use the SUBM property. For example:

%A 0
31:0 bigfield SUB 31:0
%A 1
15:0 bigfield SUBM 47:32

• Shadow: any field that is not to be constructed by csrGen, but is implemented by user added
logic can still be defined in the template for the purpose of documentation and generating
firmware or verification definition files. The shadow property prevents csrGen from
generating logic for the register.

• Pulse: the field asserts for one cycle when written as 1, and always reads as 0.
• PulseA: assert until acknowledged – when written as 1, the field asserts until an

acknowledgement is received. The name used for the acknowledgment is the field name with
_ack appended. The acknowledgment results in the deassertion at the next clock edge.

• any numeric value is taken as a reset value for the flops in the register.
• buss: for %AREPEAT only, single bit fields only, specifies that the name is taken as a vector

with a width matching the repeat count, and each address corresponds to one bit of the
vector.

4.5 csrGen Module Properties
A number of options can define properties of the entire module created by csrGen.

• %B <name> specifies a name to be used for the verilog module and files. If not specified, the
default value of chip_up_ifc is used.

• %C <name> specifies a name for flop clocks. It is added to the module inputs. The default
name is clock. The clock is used as a positive edge.

SNUG San Jose 2003 11 csrGen: Automated CSRs for ASICs/FPGAs

• %RST <name> specifies a name for flop resets. It is added to the module inputs. The default
name is initl. The reset is used as a negative (logic 0) asserted value.

• %WD <name> specifies the name used as the source of data written to CSRs. The default name
is up_datain. This is not automatically added to the module inputs, so may be an internal
signal, or declared with a %I declaration.

• %RD <name> specifies the name used as the destination for data read from CSRs. The default
name is up_dataout_D. This is not automatically added to the module outputs.

• %RM <number> specifies that the read multiplexer should be partitioned into blocks of
addresses – the number is the size of each block. This is done by appending a number to the
read data destination name – the number at each address is calculated by dividing the address
by the read multiplexer block size. Using this option, the designer can create a pipelined read
multiplexer (csrGen creates just the logic up to the first pipeline stage).

• %AUTO selects the use of 'automatics' from emacs verilog mode for the module IO list and for
the sensitivity list. csrGen will execute emacs to expand these automatically.

4.6 Flop Properties

For flops created from the %F and %OF structures and as CSR fields, the reset and direct values do
not have to be specified on the declaration line, they can be set separately with %RESETVALUE and
%FLOPVALUE, with the flop name and value as parameters. %RESETVALUEREPEAT and
%FLOPVALUEREPEAT are equivalents for repeating structures, taking a repeat count after the flop
name.

When declared, a direct value for a flop is used instead of <name>_D as the right side of the flop
posedge assignment.

4.7 Direct Verilog Code

Two definitions are used with csrGen for placing verilog code into the template file that will be
used in the module verilog code that is generated: %VCL and %V. Both mark the start of a block of
verilog code (many lines) that ends with a %E (which is required).

%VCL is always necessary for the designer to control when the write and read operations are
performed, and is for combinational logic statements (in the form of verilog's blocking
assignments). Code between the %VCL and the %E is preceded by an always @ (...) begin and
default assignments for all _D inputs to flops, and followed by end.

Code in the %V block is enclosed only by the module declaration and the endmodule statement.
This code follows all of the verilog declarations (input, output, wire, reg). This may be used for
instantiations, assign statements, and even additional always blocks as desired by the designer.

Both %VCL and %V allow for a line (or several lines) to be repeated with any % characters in the
line(s) being replaced by an incrementing index (the elusive verilog generate statement). This is

SNUG San Jose 2003 12 csrGen: Automated CSRs for ASICs/FPGAs

done with the %LOOP and %LOOPEND declarations. If %LOOP has one parameter, it is a repeat count;
if there are two parameters, they are the first and last indexes.

Additionally, any lines with verilog format comments (// or blocks formed by /* and */) are
copied to the verilog module file (before the module).

5 Design Verification
csrGen aids design verification by automatically creating definitions associated with every CSR
field, specifying the address, width, and bit position.

Another structure often required for verification is coverage measurements. csrGen can be
enhanced to generate code to measure read and write coverage of CSR fields. Today, this may be
in formats/structures that differ between projects, but perhaps a general structure for this will
emerge so that it can become a standard feature of csrGen.

The template file does specify CSR behavior well enough to lead to automatic testing of many
CSR operations. This could include:

• basic read and write operations
• randomized data to validate field position and independence
• reset value checking
• clear-on-read, write-1-to-clear testing

6 Future Enhancements and Improvements

6.1 csrGen Enhancements
csrGen has many places for improvement. This section is a loosely arranged laundry list.

The template file parsing is simplistic (a hardware engineer rather than a ‘proper programmer’
developed it). Much of the verilog creation is currently done as the template file is parsed, so no
main data structure results from the parsing. That sort of data structure may be needed to enable
future enhancements.

Wider exposure of csrGen may bring out requests or completed code for additional features and
logic structures, as each design may have different requirements.

A precursor to csrGen produced documentation in the form of tables describing the contents of
each address (in Microsoft's RTF format) – this is very desirable (HTML seems like the right
format now).

The combinational logic block coding structure may be criticized as possibly inefficient in
simulation, as the block may be invoked multiple times in one clock cycle. It may be possible to
use that structure only for fields that the designer wants to manipulate with added logic, and
place the plain fields in logic that is directly in the clocked always block.

SNUG San Jose 2003 13 csrGen: Automated CSRs for ASICs/FPGAs

Some designs may incorporate multiple processor interfaces, requiring multiple address maps
(with some shared CSRs – various sharing mechanisms are possible).

Support for multiple clocks (specifically for %F flops) may be desirable for some designs,
although I expect that all writeable CSRs in a single address map would be on a single clock.

Another structure that could be added would be 'flopped constants', since some constants that
may be used as CSRs are values like version numbers, and if a chip is ECO'ed, the version
number should usually also be changed. It can be easier to change if the constant value is at the
input to flops rather than absorbed directly into read multiplexers – and using the complement of
the value as the reset value can prevent synthesis from optimizing away the flops.

6.2 Other Directions
csrGen has been developed as a single purpose template expansion tool, but the ideas embodied
in it may suggest constructs for other languages or tools. Could the emacs verilog mode be
enhanced to expand a set of CSR definitions found inline? Could a higher level hardware design
language allow users to specify CSRs in a manner like csrGen by building the structures from an
object class?

7 Conclusions and Recommendations
I believe that csrGen has saved me enough time and mistakes to balance the investment I've
made in developing it. csrGen has been part of the design flow for two ASICs I have developed.
Each design had specific needs that led to new features.

csrGen is free for any user, and I hope that it may be adopted for use anywhere designers are
implementing large memory maps of CSRs. I welcome feedback, whether as code contributions
or requests for more features. As of the end of December 2002, the csrGen PERL script has been
downloaded from my website over 800 times since it was mentioned in an EE Times article in
September 2002, but to date I've only received feedback from one user, who suggested further
CSR structures (which I added) and contributed code to add support for the emacs verilog mode.

RTL code for CSRs can be fruitfully automated, and csrGen is a good illustration of how it can
be done.

8 Acknowledgements
Thanks to Mark Matulaitis, Mark Levesque, Andy Moroney, Jeff Koehler, Jim Wu, George
Nicholas, Chris Payson, and Steve Sherman for ideas and suggestions that have ended up in
various ways in csrGen.

9 References
[1] Verilog mode for Emacs, verilog-mode.el, 1996-2002 (and continuing), Mike McNamara,
http://www.verilog.com/verilog-mode.html

